

Rehabilitation of Historical Steel Bridge No. 321 over Rio Grande de Manatí ACT Contract No. 668504

Puente Mata de Plátano / Ing. Juan José Jiménez

March 31, 2017 Alvin Rodríguez, PE Elvin Pérez, PE

Ciales, PR

OBJECTIVES

- □ Team Information
- □ Location
- ☐ Historical Relevance
- Bridge Description
- Analysis of Alternatives
- □ Rehabilitation Considerations
 - Design guidelines exceptions
 - Bridge capacity
 - Rehabilitation schemes
- □ Highlights

TEAM INFORMATION

□ Owner

Puerto Rico Highway & Transportation Authority (PRHTA)

□ Planning, Design & Services During Construction

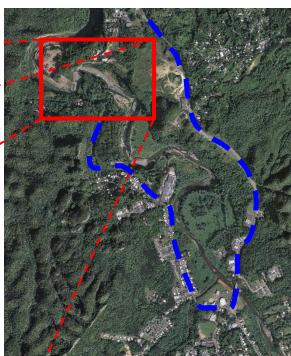
CMA Architects & Engineers LLC, PR **Sparks Engineering Consultant**, TX

■ Inspection & Safety

Puerto Rico Highway & Transportation Authority (PRHTA)

Contractor

CD Builders - General Contractor
Cholo Onsite - Structural Steel Contractor



LOCATION

□ PR-6685 Km. 9.7 over *Rio Grande de Manati*Municipality of Ciales-Manati

Manati, PR

Ciales, PR

HISTORICAL RELEVANCE

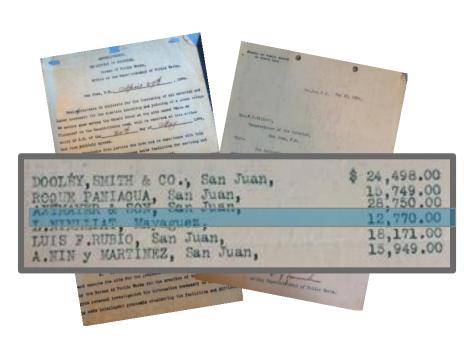
- ☐ Centenary Bridge
 - Erected in 1905 by Eng. Luis Ninlliat
 - Erected during the American Military Government
 - 112 year-old bridge
- ☐ Historic Bridge Registry
 - State Historic Preservation Office (SHPO)
 National Registry Nomination (1995)
 - Design integrity

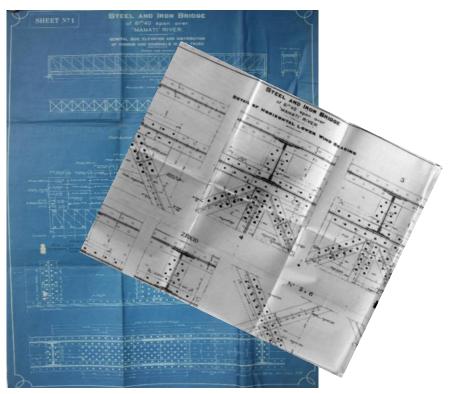
Minor rehabilitation on structural elements

- ✓ Original Elements
 - Workmanship and materials
- ✓ Locality

Importance to the community

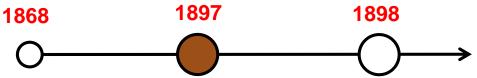
- □ One of a Kind
 - Only <u>Double Whipple Riveted Truss</u> in PR

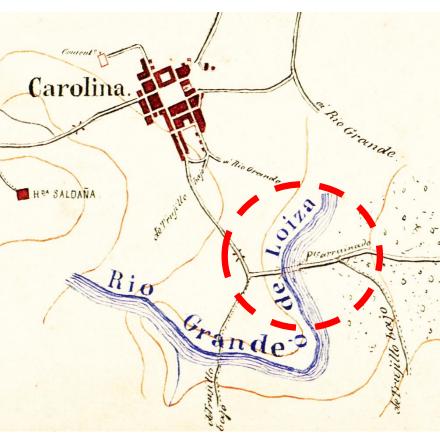

HISTORICAL RELEVANCE


□ Bid Documents

Erection & Painting

Bid / Due Date: April 29th 1904 / May 20th 1904


Lowest Bidder: \$12,770.00 [Approx. \$750k in 2017]



HISTORICAL RELEVANCE

□ June 1868

 Existing bridge in San Fernando de Carolina swept away during high floods

■ May 1897

 Municipality of Carolina requests to Spanish Government funds for a new bridge

■ November 1897

 Spanish Government approves a bridge over Rio Grande de Loiza [Puente Principe de Asturias]

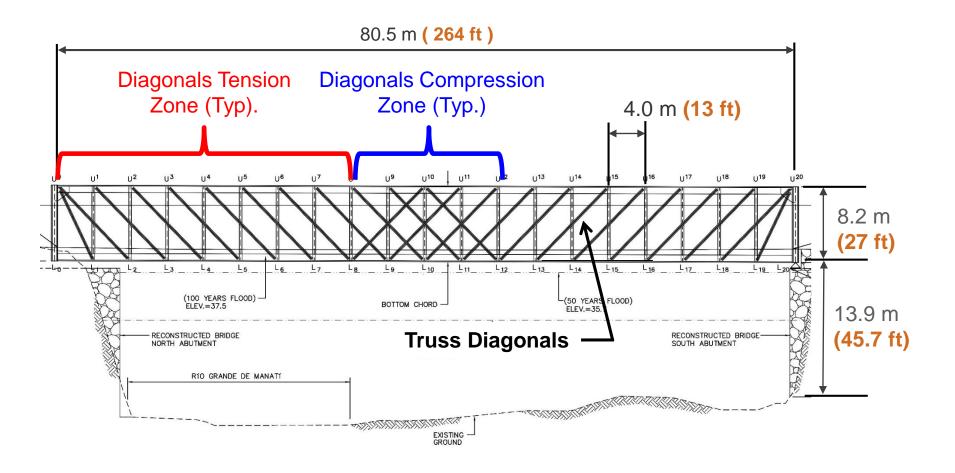
■ March 1898

Foundation construction commences in Carolina.

Reference: Archivo Histórico - Carolina PR

HISTORICAL RELEVANCE

1905 1995 2003-2010 2011-2013 2013 →


- □ April 1905
 - American Military Government determines to relocate Bridge from Carolina to Ciales
- □ June 1995
 - Bridge is included in the National Historical Registry
- □ January 2003-2010
 - Evidence of significant deterioration
 - Capacity Limited to 9 tons
 - PRHTA recommended Bridge Closure
- □ February 2011 2013
 - Detailed bridge inspections & evaluations
 - Alternative evaluations
 - Community Meetings Coordination

Dedicated to Juan Jose Jimenez (1945) DTOP Superintendent

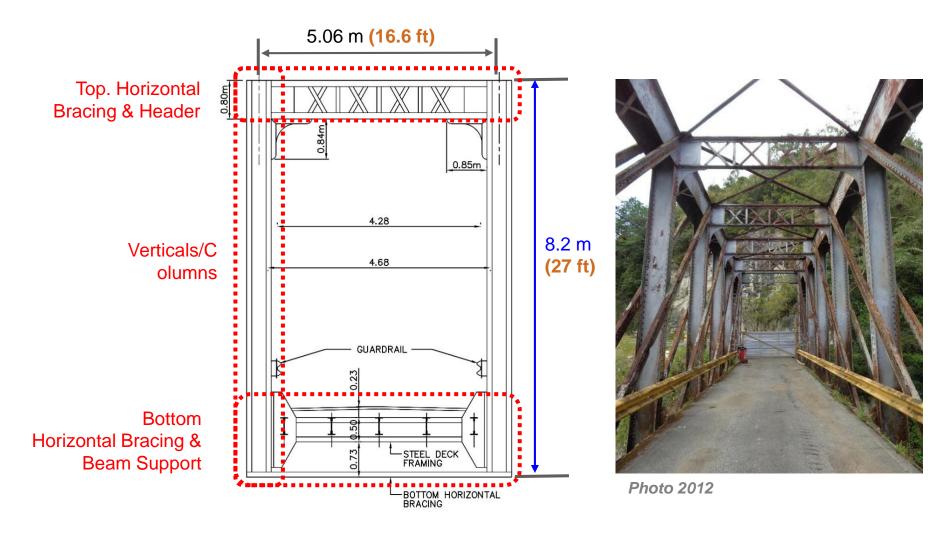
BRIDGE DESCRIPTION

ELEVATION

BRIDGE DESCRIPTION

Photo 2010

□ Steel


- Built-up Sections
- Rivet connections
- Fy Min. 26ksi

□ Roadway

- Asphalt
- Compacted soil base

BRIDGE DESCRIPTION

TYPICAL INTERMEDIATE FRAMES

ANALYSIS OF ALTERNATIVES

☐ Alternate No. 1:

No action | Permanent Bridge Closing

- Increases traffic on PR-149
- Increase in travel time from local commuters of nearby sector
- Increase in travel distance from point-of-origin to destination

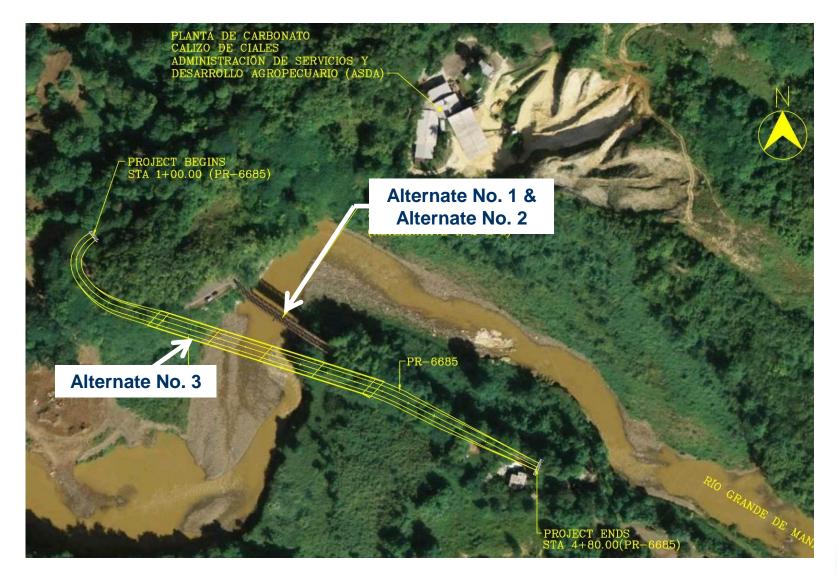
□ Alternate No. 2:

Replacement | In-kind Bridge \$3.8MM

- Single lane
- Slightly higher in elevation to be above 100yr flood level
- Adverse effect to the historical concept

☐ Alternate No. 3:

Construction of **New Bridge** \$5.5MM


Four spans: 38 m each / 152 m total span

Overall dimension: Two 3.65m wide lanes / 2.40m shoulders

- No truck capacity limitations
- Removal of existing bridge due to potential collapse during 100yr flood level

ANALYSIS OF ALTERNATIVES

ANALYSIS OF ALTERNATIVES

Let's think out of the box....

How about rehabilitating the existing bridge?

□ Alternate No. 4:

Rehabilitation \$3.3MM

- Maintain historical aspect of the bridge
- Minimize traffic impact on PR-149 due to continuity of local commuters
- Reduce travel distance for nearby sectors
- Minimize complexity of construction in an environmental sensitive area
- □ Rehabilitation Considerations
 - ✓ PRHTA Design guidelines exceptions
 - ✓ Determine bridge capacity
 - ✓ Establish rehabilitation schemes

REHABILITATION CONSIDERATIONS

Description	Design Guidelines		Exceptions
Design Speed	1979 PRHDM: AASHTO 2004:	25 mph 40 mph	15 mph posted at bridge crossing.
Bridge Width	1979 PRHDM:	6.10 m (Travel way)	3.80 m Single Lane with Traffic Controller.
	AASHTO 2004:	10.90m (Face-to-Face Railings) Full width of roadway approach	4.00 m face-to-face
Vertical Clearance	1979 PRHDM: AASHTO 2004:	4.40 m 4.30 m	Actual Height: 5.97m Limited to 2.40m at approach.
Structural Capacity	AASHTO 2004	HS-30	HS-15 Based on Existing Condition Assessment

❖ No exception taken:

 Horizontal alignment, super-elevation, vertical alignment, grade, stopping sight distance, cross-slope, lateral offset to obstruction

REHABILITATION CONSIDERATIONS

- □ Bridge Capacity | Design Guidelines
 - The Manual for Bridge Evaluation 2nd Edition (2013 Interims)
 - ✓ Allowable Stress Methodology (LRFD optional, no preference)
 - ✓ Tension Elements
 - American Institute of Steel Construction (AISC 360-05)
 - ✓ Compression Elements

Elements Evaluated

Bottom Chord, Top Chord, Verticals, Diagonals, Beams, Rivets

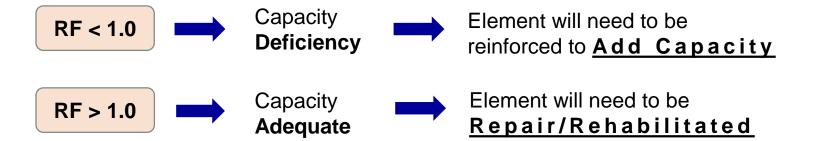
Limiting Mechanisms Tension

Evaluated: Compression (Local & Flexural Buckling)

Live load Truck Load (Point Load)
(HS-15 & HS-20): Lane Load (Uniform & Point Load)

REHABILITATION CONSIDERATIONS

☐ Fracture Critical Members (FCM) - Tension elements whose failure would be expected to result in <u>collapse</u> of the bridge.

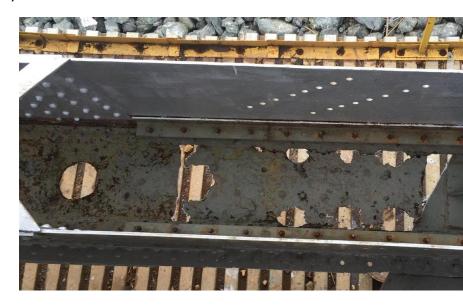


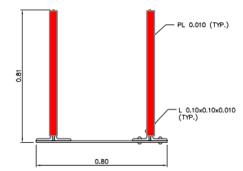
- Load-redistribution thru an all-riveted construction
- Crack propagation is not possible across adjacent elements
- Redundancy for the pair of diagonal truss elements

REHABILITATION CONSIDERATIONS

□ Load Rating Analysis (LRA) - Calculations to determine the safe live load capacity of the bridge

- □ Inventory Rating (IR)
 - ✓ Safe Live Load
 - ✓ Indefinite vehicle use
 - ✓ Minimum Maintenance


- Operating Rating (OR)
 - ✓ Maximum live load permitted
 - ✓ Limiting vehicle use
 - ✓ Frequent Maintenance


REHABILITATION CONSIDERATIONS

☐ Bottom Chords (Tension Element) - HS-15

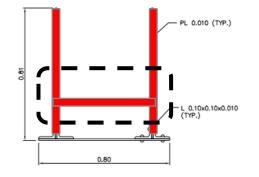
- Perforation at bottom flange plate (Approx. 35% corrosion)
- Missing rivets
- Bottom chord to Vertical flange plate corrosion

RF = 0.50 (Inventory)

RF = 2.90 (Operating)

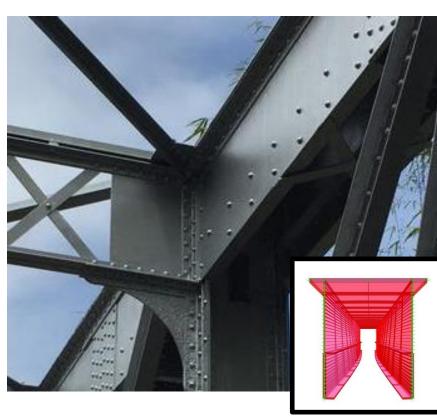
Element will need to be reinforced to **Add Capacity**

REHABILITATION CONSIDERATIONS


☐ Bottom Chords (Tension Element) – HS-15

- Additional plate added for Capacity
- Concrete added to provide drainage slopes

RF = 3.84 (Inventory) **RF = 7.46** (Operating)


REHABILITATION CONSIDERATIONS

 \Box Top Chords (Compression Element) – HS-15

- Top chord flange buckling
- Loss of section observed

RF = 0.57 (Inventory) **RF = 0.59** (Operating)

 Added new C12x30 channels each side for stiffness

RF = 7.50 (Inventory)

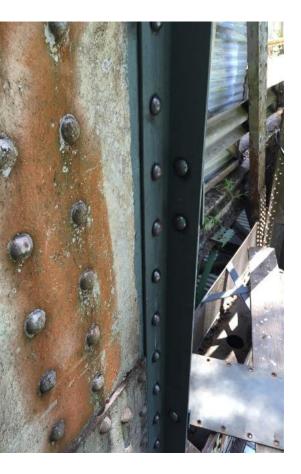
RF = 6.94 (Operating)

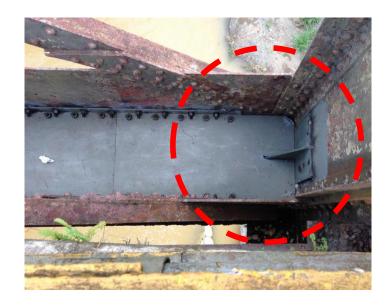
REHABILITATION CONSIDERATIONS

☐ East & West Truss Verticals - HS-15

- Severe Corrosion at bottom chord
- Missing rivets
- Deformation/bends at column flanges

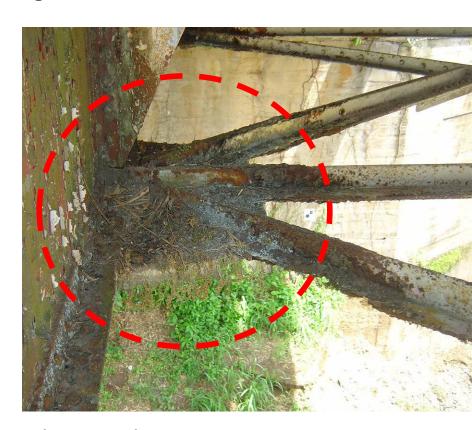
RF = 7.07 (Inventory)


RF = 9.92 (Operating)


Element will need to be Repair/Rehabilitated

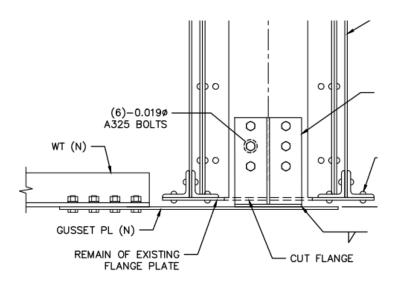
REHABILITATION CONSIDERATIONS

☐ East & West Truss Vertical — HS-15


- Added new angles/plate bars & rivets replacement
- Added new transfer plates for lateral load transfer

REHABILITATION CONSIDERATIONS

□ Horizontal Bottom Truss Diagonals



- Bottom truss with severe corrosion at angles and gusset plates
- Areas with significant loss of section
- Connection to column is compromised

REHABILITATION CONSIDERATIONS

□ Horizontal Bottom Truss Diagonals

- Steel angle replacement
- Steel plate connection to column replaced

REHABILITATION CONSIDERATIONS

□ Horizontal Top Truss Diagonals

- Top truss with severe corrosion at angles & gusset plates
- Local areas with significant loss of section

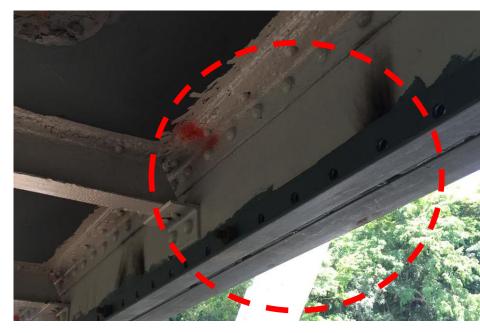
REHABILITATION CONSIDERATIONS

□ Cross-Beams & Horizontal Truss Diagonals

- Replace top cross-beam
- Replace horizontal truss diagonals

REHABILITATION CONSIDERATIONS

□ Horizontal Top Truss Diagonals

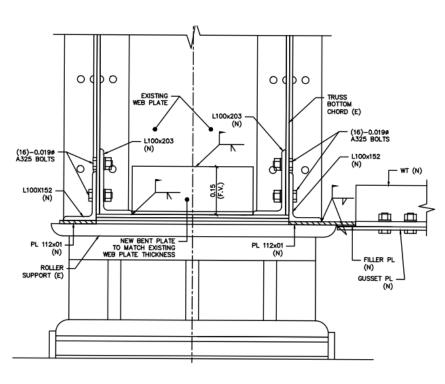


REHABILITATION CONSIDERATIONS

□ Deck & Supporting Beam - (HS-15)

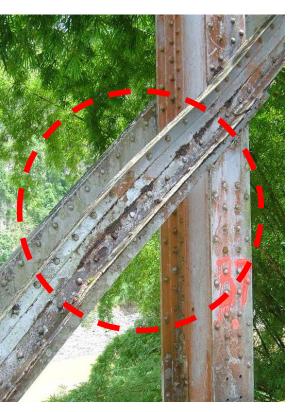
- Moderate underside corrosion
- Local areas with significant loss of section

Replacement of angles


RF = 1.40 (Inventory) **RF = 2.30** (Operating) Element will need to be Repair/Rehabilitated

REHABILITATION CONSIDERATIONS

□ Abutment



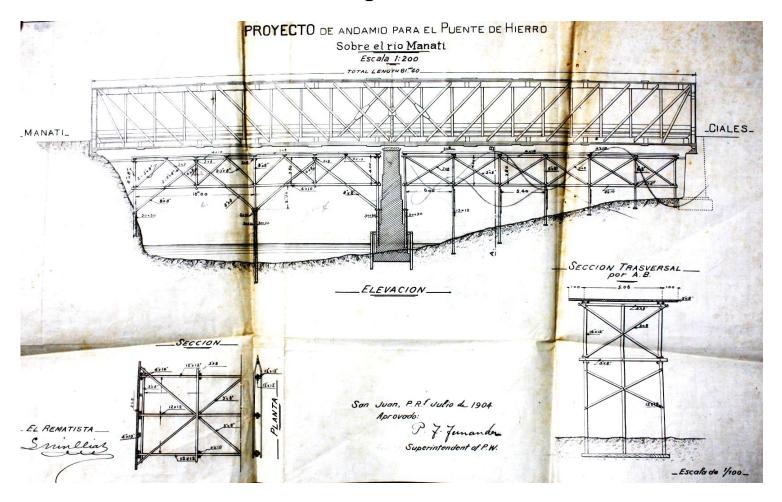
- Moderate corrosion at beam connection to roller
- Free sliding inhibited due to rust

REHABILITATION CONSIDERATIONS

☐ East & West Truss Diagonals - (HS-15)

- Flange deformation/bends
- Significant corrosion

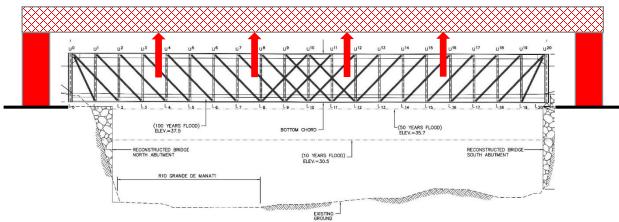
RF = 3.29 (Inventory)


RF = **6.88** (Operating)

Element will need to be Repair/Rehabilitated

REHABILITATION CONSIDERATIONS

□ East & West Truss Diagonals

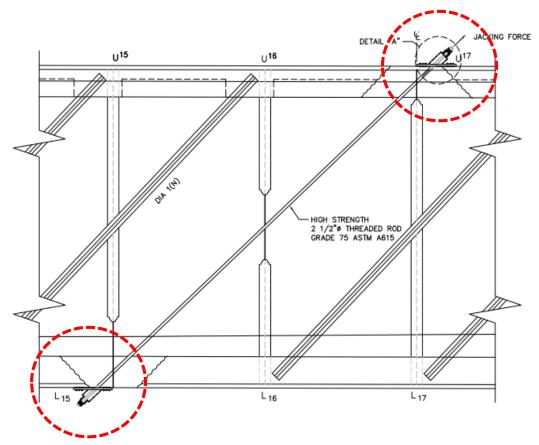


Let's do it the original way...

ARCHITECTS & ENGINEERS LLC

REHABILITATION CONSIDERATIONS

□ East & West Truss Diagonals


...construction gangway from above?

REHABILITATION CONSIDERATIONS

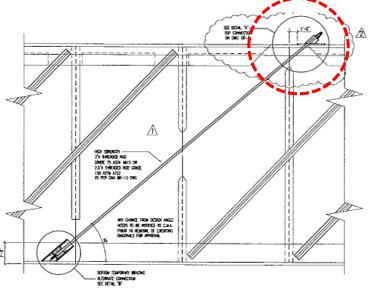
■ East & West Truss Diagonals

...how about a **temporary load transfer mechanism?**

Dead-End Jacking Force System

- Readily available equipment (Hydraulic jack, electric pump)
- Area accessibility

Forces will need to be determined with precision

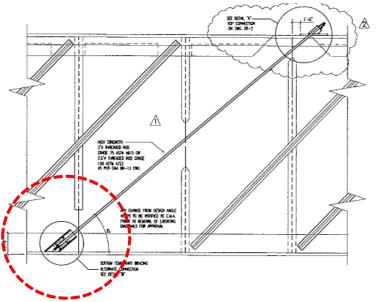

- ✓ 3D State-of-the-Art modeling
- ✓ Knowledge of Const. Live Load

REHABILITATION CONSIDERATIONS

■ East & West Truss Diagonals

Top Chord **Active** End Jack

Weight = 1400 lbs.


REHABILITATION CONSIDERATIONS

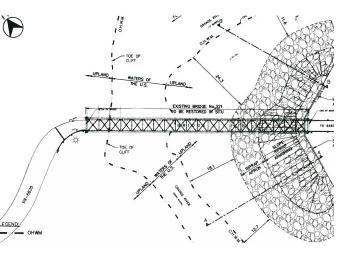
□ East & West Truss Diagonals

Bottom Chord **Dead** End Jack

Weight = 400 lbs.

REHABILITATION CONSIDERATIONS

□ East & West Truss Diagonals



REHABILITATION CONSIDERATIONS

VIDEO

REHABILITATION CONSIDERATIONS

REHABILITATION CONSIDERATIONS

REHABILITATION CONSIDERATIONS

□ Rehabilitation Schemes

Take all superimposed dead weight off the bridge

REHABILITATION CONSIDERATIONS

□ Rehabilitation Schemes

- Limit maximum platform dead load restricted to 10psf
- Limit maximum construction load to 115psf

HIGHLIGHTS

□ Structural Steel		
Existing Steel	613,000 lbs.	
 Replacement Steel 	122,500 lbs.	(20% Existing Steel)
 Added Steel (Capacity Increase) 	46,400 lbs.	(8% Existing Steel)
□ Roadway		
Existing Pavement & Soil	334,000 lbs.	
New Conc. Slab	417,000 lbs.	(25% Increment)
□ Diagonal Bracings		
 Bracing Replacement Execution T 	ïme 16 days	@ Initial stages
 Bracing Replacement Execution T 	ïme 5 days	@ later stages
Steel Plates	A36 (36ksi)	
Tension Rod (DYWIDAG)	2 ½" diam. Grade 150	Safety Factor = 3.0
Hydraulic Pump (ENERPAC)	150 tons	•
☐ Start / Expected Comp.	Oct. 2013 / Oct. 2017	
□ Awarded Cost	3.3MM	
☐ Construction Cost	3.8MM	

HIGHLIGHTS

□ Key Elements of Success:

- Collaboration
 - Between the Owner, Contractor, Inspection and Design Team
 - Proved to be effective in the execution and minimization of environmental risks.
- Detailed execution strategy plan and protocols
 - At selective demolition, material selection and rehabilitation work was critical
- Fabricated materials on-site
- Proven execution methodology
 - for potential rehabilitation work at other bridges with similar structural configurations.

ACKNOWLEDGEMENTS

- □ Collaboration in the design process
 - Elvin Pérez Structural Design
 - Jorge Santory Structural Design
 - Mauricio Torres Bridge Design
- □ Collaboration review process & comments
 - Ricardo Herrera
 - Jose Torres
 - Jose Carro
 - Yma Doitteau
 - Juan B. Fuentes

Rehabilitation of Historical Steel Bridge No. 321 over Rio Grande de Manatí

